
1

Cryptography - SSH

bdNOG7

19-22 November 2017

Dhaka, Bangladesh

What is “Secure”

• Authentication – I know who I am talking to

• Our communication is Encrypted

Telnet

Servers

Routers

Terminal

SSH – encrypted channel

Servers

Routers

Terminal

Secure Shell (SSH)

• Authenticated and encrypted shell access to a
remote host

• Client-server model

• TCP 22

• It is much more than a secure shell
– Transport protocol (eg. SCP, SFTP)
– Connection forwarder
• You can use it to build custom tunnels

Secure Shell (SSH) process

• Client-server crypto handshake

• Generate a symmetric key to secure the transport

• Client authenticates to server securely

• Secure communication can begin

SSH – under the hood
CipherSuite Negotiation

The highest supported by both
- Encryption algorithm
- Hashing algorithm
- Key-exchange algorithm

Client generates
random

- Client decrypts signed hash
- Compute and compare

hashes (validate S-random)

• Master key (shared-secret) used to
encrypt all messages!

• The hash is used as SSH session ID

Server generates
random
- Hash [C-random and S-

random]
- Sign hash with its private-

key

Master Key
- Compute Master key

using C-random and
its own random

- Compute Master
key using S-random
and its own random

SSH Authentication

• Client sends its username to server over the secure
channel
– Encrypted using the “shared master key”

• Server checks if the username exists in the local
database
– If username not valid, tear down the SSH session!

– If valid, the server sends back authentication method
• Password based
• Public-key based

SSH Authentication – Password

• Client sends its password
– encrypted using the shared master secret

• Server decrypts, and checks the password
– If match found, access is granted (shell access)

Password Authentication

• Password Authentication is simple to set up
– usually the default

• But allows brute-force guessing L

SSH Authentication - Public Key

• User creates a key pair
– public and private
• public key - nonsensitive information
• private key - is protected on the local machine by a strong passphrase

• Installs the public key in $HOME/.ssh/authorized_keys
file on the target server.
– one time installation

How it works - Key Challenge

1. Client connects to server with a
request to set up a key session

– Sends KeyID for the key-pair it
wants to use, and

– Username/account-name

2. If there is a public key in the
authorized_keys

– server generates a random
number

– encrypts the random using client’s
public

– sends the encrypted random as a
key-challenge to client

Encryption
(Client’s Public Key)

Server
Random

Key Challenge

Encrypted
random

🔑

How it works - Key Response

3. Client decrypts the random
number with its private key

4. Creates an MD5 hash of
the random and the
session ID
– sends back to the server as

the key response
• encrypted with shared Master key

MD5

SSH
Session ID

Key Response

🗝

Encrypted
random

Decryption
(Private Key)

Server
Random

HASH

5. The server computes its
own MD5 hash and
compares it with the
received hash
– random number +

session ID

6. If the hashes match, the
user must be in
possession of the private
key
– access is granted!

How it works - Access

Key Response

HASH

SSH
Session ID

Server
Random

MD5

HASH

Public Key Authentication

• Cannot derive private key from public key!
– Cannot brute force either

• Requires one-time setup of public key on target
system

• Requires unlocking private key with secret
passphrase upon each connection
– If you have setup one

Public Key Access

• Never store Private Key on a multi-user host

• Store Private Key ONLY on your machine and
protect
– Encrypt Disk!

• It is OK to use SSH_AGENT to remember your key
ONLY if your laptop/computer locks very quickly

SSH Keys on Unix /MacOS

• SSH is built-in
– UNIX
– Linux
– MacOS X

Generate Key (Unix / MacOS)
$/usr/home/foo> ssh-keygen -t rsa -b 4096 -C your_email@example.com

Generating public/private rsa key pair.

Enter file in which to save the key (/usr/home/foo/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /usr/home/foo/.ssh/id_rsa.

Your public key has been saved in /usr/home/foo/.ssh/id_rsa.pub.

The key fingerprint is:

27:99:35:e4:ab:9b:d8:50:6a:8b:27:08:2f:44:d4:20
your_email@example.com

SSH Keys (Unix / MacOS)

~/.ssh/id_rsa: The private key

DO NOT SHARE THIS FILE!

~/.ssh/id_rsa.pub: The associated public key. This
can be shared freely without consequence.

Password vs Passphrase

source : http://xkcd.com/936/

Private Key on Windows

• https://www.chiark.greenend.org.uk/~sgtatham/pu
tty/latest.html
– PuTTY (the Telnet and SSH client itself)
– PuTTYgen (an RSA and DSA key generation utility)
– Pageant (an SSH authentication agent for PuTTY, PSCP,

PSFTP, and Plink)

Generate Key (Windows)

1. Run PuttyGen

Generate Key (Windows)

2. Generate Key

Generate Key (Windows)

3. Enter Passphrase &
save Private Key

4. Right-click in the text
field labeled Public key for
pasting into OpenSSH
authorized_keys file and
choose Select All and
copy the key

Saving Key on the Target Host

• You can copy the public key into the new machine's
authorized_keys file with the ssh-copy-id
command

ssh-copy-id user@serverip

• Alternatively, you can paste in the keys using SSH:

cat ~/.ssh/id_rsa.pub | ssh user@serverip "mkdir -p
~/.ssh && cat >> ~/.ssh/authorized_keys”

4. Load Key in Putty

Saving Key on the Target Host -
Windows

5. SSH to host

username@ipaddress

Saving Key on the Target Host -
Windows

6. Accept Host’s Key

Saving Key on the Target Host -
Windows

7. passphrase for Key

Saving Key on the Target Host -
Windows

Lab Exercise

• Create your key

• Follow the lab manual ssh-lab.pdf

