Routing Basics

ISP Training Workshops

Routing Concepts

- p IPv4
- P Routing
- P Forwarding
- P Some definitions
- Policy options
- P Routing Protocols

IPv4

- p Internet uses IPv4
 - Addresses are 32 bits long
 - Range from 1.0.0.0 to 223.255.255.255
 - 0.0.0.0 to 0.255.255.255 and 224.0.0.0 to 255.255.255.255 have "special" uses
- P IPv4 address has a network portion and a host portion

IPv4 address format

- P Address and subnet mask
 - written as
 - 12.34.56.78 **255.255.255.0** *or*
 - 12.34.56.78/24
 - mask represents the number of network bits in the 32 bit address
 - the remaining bits are the host bits

What does a router do?

A day in a life of a router

find path

forward packet, forward packet, forward packet...

find alternate path

forward packet, forward packet, forward packet, forward packet, forward packet...

repeat until powered off

Routing versus Forwarding

- P Routing = building maps and giving directions
- p Forwarding =
 moving packets
 between interfaces
 according to the
 "directions"

IP Routing – finding the path

- Path derived from information received from a routing protocol
- P Several alternative paths may exist
 - best path stored in forwarding table
- P Decisions are updated periodically or as topology changes (event driven)
- p Decisions are based on:
 - topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

IP route lookup

- P Based on destination IP address
- p "longest match" routing
 - More specific prefix preferred over less specific prefix
 - Example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP route lookup

P Based on destination IP address

P Based on destination IP address

P Based on destination IP address

R2's IP routing table

P Based on destination IP address

R2's IP routing table

Based on destination IP address

Based on destination IP address

15

IP Forwarding

- P Router decides which interface a packet is sent to
- P Forwarding table populated by routing process
- P Forwarding decisions:
 - destination address
 - class of service (fair queuing, precedence, others)
 - local requirements (packet filtering)
- P Forwarding is usually aided by special hardware

Routing Tables Feed the Forwarding Table

RIBs and FIBs

FIB is the Forwarding Table

- It contains destinations and the interfaces to get to those destinations
- Used by the router to figure out where to send the packet
- Careful! Some people still call this a route!

P RIB is the Routing Table

- It contains a list of all the destinations and the various next hops used to get to those destinations – and lots of other information too!
- One destination can have lots of possible next-hops only the best next-hop goes into the FIB

Explicit versus Default Routing

p Default:

- simple, cheap (cycles, memory, bandwidth)
- low granularity (metric games)
- p Explicit (default free zone)
 - high overhead, complex, high cost, high granularity
- p Hybrid
 - minimise overhead
 - provide useful granularity
 - requires some filtering knowledge

Egress Traffic

- P How packets leave your network
- P Egress traffic depends on:
 - route availability (what others send you)
 - route acceptance (what you accept from others)
 - policy and tuning (what you do with routes from others)
 - Peering and transit agreements

Ingress Traffic

- P How packets get to your network and your customers' networks
- p Ingress traffic depends on:
 - what information you send and to whom
 - based on your addressing and AS's
 - based on others' policy (what they accept from you and what they do with it)

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- P Usually under single ownership, trust and administrative control

Definition of terms

Neighbours

- AS's which directly exchange routing information
- Routers which exchange routing information

p Announce

send routing information to a neighbour

p Accept

receive and use routing information sent by a neighbour

P Originate

 insert routing information into external announcements (usually as a result of the IGP)

p Peers

 routers in neighbouring AS's or within one AS which exchange routing and policy information

Routing flow and packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

AS1 must accept from AS2

Routing flow and Traffic flow

- P Traffic flow is always in the opposite direction of the flow of Routing information
 - Filtering outgoing routing information inhibits traffic flow inbound
 - Filtering inbound routing information inhibits traffic flow outbound

Routing Flow/Packet Flow: With multiple ASes

- For net N1 in AS1 to send traffic to net N16 in AS16:
 - AS16 must originate and announce N16 to AS8.
 - AS8 must accept N16 from AS16.
 - AS8 must announce N16 to AS1 or AS34.
 - AS1 must accept N16 from AS8 or AS34.
- P For two-way packet flow, similar policies must exist for N1

Routing Flow/Packet Flow: With multiple ASes

P As multiple paths between sites are implemented it is easy to see how policies can become quite complex.

Routing Policy

- P Used to control traffic flow in and out of an ISP network
- P ISP makes decisions on what routing information to accept and discard from its neighbours
 - Individual routes
 - Routes originated by specific ASes
 - Routes traversing specific ASes
 - Routes belonging to other groupings
 - p Groupings which you define as you see fit

Routing Policy Limitations

- P AS99 uses red link for traffic to the red AS and the green link for remaining traffic
- p To implement this policy, AS99 has to:
 - Accept routes originating from the red AS on the red link
 - Accept all other routes on the green link

Routing Policy Limitations

- AS99 would like packets coming from the green AS to use the green link.
- But unless AS22 cooperates in pushing traffic from the green AS down the green link, there is very little that AS99 can do to achieve this aim

Routing Policy Issues

- P Mid-August 2012:
 - 422000 prefixes
 - Not realistic to set policy on all of them individually
 - 42000 origin AS's
 - P Too many to try and create individual policies for
- P Routes tied to a specific AS or path may be unstable regardless of connectivity
- P Solution: Groups of AS's are a natural abstraction for filtering purposes

Routing Protocols

We now know what routing means...
...but what do the routers get up
to?

And why are we doing this anyway?

- P Internet is made up of the ISPs who connect to each other's networks
- P How does an ISP in Kenya tell an ISP in Japan what customers they have?
- P And how does that ISP send data packets to the customers of the ISP in Japan, and get responses back
 - After all, as on a local ethernet, two way packet flow is needed for communication between two devices

- P ISP in Kenya could buy a direct connection to the ISP in Japan
 - But this doesn't scale thousands of ISPs, would need thousands of connections, and cost would be astronomical
- P Instead, ISP in Kenya tells his neighbouring ISPs what customers he has
 - And the neighbouring ISPs pass this information on to their neighbours, and so on
 - This process repeats until the information reaches the ISP in Japan

- P This process is called "Routing"
- P The mechanisms used are called "Routing Protocols"
- P Routing and Routing Protocols ensures that the Internet can scale, that thousands of ISPs can provide connectivity to each other, giving us the Internet we see today

- P ISP in Kenya doesn't actually tell his neighbouring ISPs the names of the customers
 - (network equipment does not understand names)
- Instead, he has received an IP address block as a member of the Regional Internet Registry serving Kenya
 - His customers have received address space from this address block as part of their "Internet service"
 - And he announces this address block to his neighbouring ISPs – this is called announcing a "route"

Routing Protocols

- P Routers use "routing protocols" to exchange routing information with each other
 - IGP is used to refer to the process running on routers inside an ISP's network
 - EGP is used to refer to the process running between routers bordering directly connected ISP networks

What Is an IGP?

- P Interior Gateway Protocol
- P Within an Autonomous System
- P Carries information about internal infrastructure prefixes
- p Two widely used IGPs:
 - OSPF
 - ISIS

Why Do We Need an IGP?

- P ISP backbone scaling
 - Hierarchy
 - Limiting scope of failure
 - Only used for ISP's infrastructure addresses, not customers or anything else
 - Design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

What Is an EGP?

- Exterior Gateway Protocol
- P Used to convey routing information between Autonomous Systems
- P De-coupled from the IGP
- P Current EGP is BGP

Why Do We Need an EGP?

- P Scaling to large network
 - Hierarchy
 - Limit scope of failure
- P Define Administrative Boundary
- p Policy
 - Control reachability of prefixes
 - Merge separate organisations
 - Connect multiple IGPs

Interior versus Exterior Routing Protocols

p Interior

- automatic neighbour discovery
- generally trust your IGP routers
- prefixes go to all IGP routers
- binds routers in one AS together

p Exterior

- specifically configured peers
- connecting with outside networks
- set administrative boundaries
- binds AS's together

Interior versus Exterior Routing Protocols

p Interior

- Carries ISP infrastructure addresses only
- ISPs aim to keep the IGP small for efficiency and scalability

p Exterior

- Carries customer prefixes
- Carries Internet prefixes
- EGPs are independent of ISP network topology

Hierarchy of Routing Protocols

FYI: Cisco IOS Default Administrative Distances

Route Source	Default Distance
Connected Interface	0
Static Route	1
Enhanced IGRP Summary R	loute 5
External BGP	20
Internal Enhanced IGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EGP	140
External Enhanced IGRP	170
Internal BGP	200
Unknown	255

Routing Basics

ISP Training Workshops